حل عددی معادلات دیفرانسیل و انتگرال مرتبه کسری با استفاده از روش های طیفی بر اساس عملگرهای ماتریسی
thesis
- وزارت علوم، تحقیقات و فناوری - دانشگاه تربیت مدرس - دانشکده علوم ریاضی
- author امین کایدی بارده
- adviser محمد زضا اصلاحچی مهدی دهقان
- Number of pages: First 15 pages
- publication year 1391
abstract
در این پایان نامه حل عددی معادلات دیفرانسیل و انتگرال مرتبه کسری بر اساس عملگرهای ماتریسی مورد بررسی قرار می گیرد. از مزایای این روش راحتی در پیاده سازی و تسهیل محاسبات عددی است که در معادلات دیفرانسیل همواره مورد توجه بوده است. در معادلات دیفرانسیل مرتبه کسری این عملگرها از قدمت چندانی برخوردار نیستند ولی به طور روز افزون در حال گسترش هستند. در اینجا اساس روش عددی مورد بحث، تقریب جواب مسئله بر اساس توابع پایه ای متعامد است که از نمایش برداری آنها استفاده می شود. سپس بعد از تولید عملگرهایی (ماتریسی) آنها را در معادلات دیفرانسیل مرتبه کسری، جایگزین مشتقات و انتگرال مرتبه کسری کرده و پس از اعمال روش طیفی مورد نظر دستگاهی خطی یا غیر خطی تولید می شود که پس از حل آن بردار ضرایب توابع پایه ای بدست می آید که در نهایت منجر به جواب تقریبی می شود. در فصل آخر از این پایان نامه عملگرهای ماتریسی جدیدی را معرفی می کنیم که بر پایه توابع متعامد ژاکوبی کسری هستند. عملگر ماتریسی مشتق کاپوتو یعنی e^((?,?,?)) و عملگر ماتریسی انتگرال ریمان-لیوویل یعنی i^((?,?,?)) را با رویکردی جدید تولید کرده و سپس کاربرد و نتایج عددی مربوطه را آورده ایم.
similar resources
دیفرانسیل و انتگرال از مرتبه کسری
در این مقاله، با استفاده از تابع گاما به معرفی انتگرال و مشتق کسری یک تابع می پردازیم و در ادامه به چند کاربرد از این موضوع در چند شاخه مختلف و از جمله هندسه فرکتالی اشاره می کنیم. هدف اصلی این مقاله معرفی مراجع مناسب برای مطالعه و آشنایی هر چه بیشتر با این موضوع می باشد.
full textبهینه سازی روش تجزیه آدومیان برای حل معادلات دیفرانسیل از مرتبه کسری
تاکنون روش تجزیه آدومیان بهطور گستردهای برای حل انواع معادلات دیفرانسیل بهکار گرفته شده است. اما در برخی موارد دیده شده است که این روش دقت کمتری نسبت به روشهای دیگر ازجمله روشهای هموتوپی دارد. از آنجایی که این روش، یک روش نسبتاً عمومی و قدرتمند برای یافتن جوابهای تحلیلی-تقریبی از انواع معادلات دیفرانسیل میباشد، در این مقاله سعی شده با بهکارگیری الگوی استاندارد این روش، یک روش بهینه جدید ...
full textروش بدون شبکه برای حل عددی معادلات دیفرانسیل از مرتبه کسری
در این مقاله یک تکنیک کلی شناخته شده با عنوان روش بدون شبکه برای حل معادلات دیفرانسیل از مرتبه کسری درنظرگرفته شده است.جواب دقیق را با کمک روش مبتنی بر هم محلی توابع پایه شعاعی مورد تقریب قرار میدهیم.این تکنیک نقش مهمی که ایفا می کند معادله دیفرانسیل کسری را به یک دستگاه معادلات تقلیل می دهد.نتایج عددی بیانگر دقت وتوانایی این روش است.
full textحل عددی معادلات دیفرانسیل معمولی کسری با روش گالرکین ناپیوسته موضعی
در این مقاله، روش گالرکین ناپیوستهی موضعی برای حل معادلات دیفرانسیل معمولی با مرتبهی کسری را در حالت کلی به کار میبریم. در این روش انتخاب (طبیعی) شار عددی آپویند، ما را قادر میسازد تا مسائل مقدار اولیه برای معادلات کسری معمولی را به صورت بازه به بازه و پیشرو در زمان حل کنیم. این بدین معنی است که ما بایستی در هر زیربازه به حل یک دستگاه معادلات از مرتبه پایین $(k+1)times (k+1)$...
full textحل معادلات دیفرانسیل و انتگرال با توابع والش
هر شکل موج متناوب و مناسب را می توان بصورت یک سری از توابع والش بیان کرد . اگر سری در انتهای گروهی از جملات با مرتبه معیین قطع گردد جمع جزئی جمل تقریب پلکانی شکل موج خواهد بود ، بلندی هر پله مساوی مقدار متوسط شکل موج در همان فاصله خواهد بود . اگر یک تبدیل غیر خطی حافظ صفر به یک سری والش اعمال گردد ، سری حاصل را می توان با اعمال جبری ساده بدست آورد . ضرایب سری اولیه تغییر خواهد کرد اما جمله ها...
full textروش هم محلی ژاکوبی با مرتبه بالا برای معادلات دیفرانسیل کسری تک مرتبه ای غیر خطی
This article has no abstract.
full textMy Resources
document type: thesis
وزارت علوم، تحقیقات و فناوری - دانشگاه تربیت مدرس - دانشکده علوم ریاضی
Keywords
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023